烟草学院教师简介

姓 名	韩 丹	性 别	女	出生年月	1987.6			
民族	汉	籍贯	河南开封	政 治 面 貌	中共党员			
最高学历/学位	博士	毕业院校 及专业						
E-mail								
职称职务		副教授		硕导/博导	硕导			
所在部门		烟草学院						
主讲课程		本科生:烟草生态学、烟草科学研究方法 研究生:植物生理生化、专业讨论课						
学科方向及研究 重点		烟草品质生态 烟草逆境生理						

学术背景与个人特色

教育背景

2010.09-2015.06 华中农业大学 植物营养学 硕博连读;

2006.09-2010.06 河南农业大学 农业资源与环境 本科;

工作经历

2015.09-至今 河南农业大学烟草学院任教;

2021.06-至今 硕士生导师;

教育教学

校级"烟草品质生态"教学团队骨干成员,主讲河南省一流本科课程《烟草生态学》等四门本、硕课程。主持校级教学工程和教改项目 2 项;获校级本科课堂教学质量二等奖、线上教学优秀课程二等奖、创新与实践教学成果二等奖和优质课大赛微课奖等 4 项;参编河南省"十四五"规划教材《烟草生态学》、农业部农村"十三五"规划教材《烟草科学研究方法》等 3 部。

科研工作

从事烟草品质生态学研究,在微量元素硒与烟草逆境生理方面具有特色。主持河南省科技攻关、河南省高等学校重点科技攻关、浙江中烟、湖北省、贵州省烟草公司科技攻关、校科技创新基金和校博士启动基金项目等7项,参与国家自然科学基金、省部级科技攻关项目、浙江中烟、湖北省局和河南省局项目多项。获河南省烟草公司科学技术进步三等奖1项;获国家发明专利授权2项;科研鉴定成果3项。在《Chemosphere》、《Ecotoxicology and Environmental Safety》、《植物生理学报》、《中国烟草学报》等专业杂志上发表学术论文多篇,其中SCI 收录数篇。参加工作以来,以服务行业为宗旨,多次深入湘南、湘北、河南南阳、洛阳、三门峡烟区基层烟站,开展技术服务和开发工作。

代表性成果 (项)	序号	成果名称(获奖、论文、专著、发明专利、鉴定	获奖名称、等级及证书号,刊物 名称及 ISSN、检索号,出版单位 及 ISBN,专利授权号,鉴定单位 等		获得 时间	署名次 序或类
		成果等)			H.) IH)	型
	1	Comparison of selenite and selenate in alleviation of drought stress in <i>Nicotiana tabacum</i> L.	Chemosphere, ISSN: 0045-6535 DOI:10.1016/j.chemosphere.2021.1 32136.		2022.01	第1作者
	2	Differential cadmium translocation and accumulation between <i>Nicotiana tabacum</i> L. and <i>Nicotiana rustica</i> L. by transcriptome combined with chemical form analyses	Ecotoxicology and Environmental Safety, ISSN: 0147-6513 DOI:10.1016/j.ecoenv.2020.111412.		2021.01	通讯作者
	3	Separation of selenium species in plant tissues by high performance liquid chromatographyultraviolet treatment-hydride generation atomic fluorescence spectrometry using various mobile phases	Biotechnology&Biotechnological Equipment, ISSN:1310-2818 DOI:10.1080/13102818.2021.19116 82		2021.01	第1作者
	4	人工气候室条件下 K326 和云烟 87 烤烟品种吸收 Se (VI)的动力学分析	烟草科技,ISSN: 1002-0861		2020.04	第1作者
	5	硒对烤烟生长、化学指标及矿质营养 元素含量的影响	核农学报,ISSN:1000-8551		2017.08	第1作者
	6	WRKY 转录因子家族响应农作物元素胁迫的研究进展	植物生理学报,ISSN: 2095-1108		2021.02	第1通讯 作者
	7	基于文献计量学的烟草基因组研究 知识图谱分析	中国烟草学报,ISSN: 1004-5708		2022.01	通讯作者
	8	基于文献计量学的烟草代谢组知识 图谱分析	烟草科技, ISSN: 1002-0861		2021.12	通讯作者
	9	《烟草生态学》(系河南省一流课程、 校核心示范课程)	中国农业出版社 ISBN: 978-7-109-27348-1		2020.11	参编
	10	发明专利: 硒在制备用于提高烟草抗 旱能力的制剂中的应用	专利号: ZL201911050041.0		2021.08	第 1
代表性项 目(限填 <i>5</i> 项)	序号	项目、课题名称 (下达编号)	项目来源	项目 起止时间	主持/参 与	经费 (万元)
	1	利用转录因子 WRKY70 提高茄科作物硒元素利用效率的研究	河南省科技 攻关项目	2021.01.01- 2022.12.30	主持	
	2	硒缓解双子叶植物镉毒害的生理生 化机制研究及应用	河南省高等学校 重点科研项目	2020.01.01- 2021.12.30	主持	
	3	"利群"品牌导向的浓香型原料生产 保障技术研究与应用	浙江中烟科技 创新项目	2023.01.01- 2024.10.30	主持	
	4	提高襄阳烟叶配方满足率的关键技 术研究	中国烟草总公司 湖北省公司科技 创新项目	2020.01.01- 2022.12.30	共同 主持	
	5	郑州市区河流水系接合质粒介导的 碳青霉烯类与多粘菌素类抗性基因 污染特征及分子传播机制研究	国家自然科学青 年基金	2019.01.01- 2021.12.30	第二	